Semiconductor nanostructures for optoelectronics

Semiconductor nanostructures are part of an emergent class of materials that provide unprecedented levels of functionality in building devices for electronics and optoelectronics applications. Associated Nanoscale devices may be used to study new physics in low-dimensional systems and enables a route for the development of new technologies in key areas, such as communications and information processing, sensing and renewable energy as well as biomedicine.

This symposium was the fourth instalment of a highly successful biennial series that began in 2007. Bringing together researchers working in academia and industry, it presented the latest research in semiconductor Nanostructures and their applications to electronic, optoelectronic and photonic devices. Blending experimental with numerical and theoretical approaches, it covered all aspects of fundamental growth and material development, to interfaces, device integration and testing.

  • Biomedical imaging
  • Photoacoustic computed tomography
  • General equation
  • Universal reconstruction algorithm
  • Simple system
  • Biomedical applications
  • Brain lesion detection
  • Hemodynamics monitoring
  • Breast cancer diagnosis
  • Photoacoustic microscopy

  • Semiconductor nanostructures
  • Locked laser diodes
  • Optoelectronic Device Applications
  • Quantum efficiency
  • Optoelectronics and photonic applications

Semiconductor nanostructures for optoelectronics Conference Speakers

    Recommended Sessions

    Related Journals

    Are you interested in